Search results for " Ceramics"

showing 10 items of 117 documents

Savaime sklindančios aukštatemperatūrinės sintezės būdu gautų aliuminio oksinitrido miltelių ir jų keramikų optinės savybės

2021

The reported study was funded by RFBR according to the Research Project No. 19-08-00655. V.P. acknowledges the State Research Program ‘Aug-stas enerģijas fizika un paātrinātāju tehnoloģijas’ (Projekta Nr. VPP-IZM-CERN-2020/1-0002). The Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the H2020-WIDESPREAD-01-2016-2017-Teaming Phase2 under Grant Agreement No. 739508, Project CAMART2.

010302 applied physicsAluminium oxynitrideMaterials scienceAlONOptical propertiesAluminium oxynitrideSelf-propagating high-temperature synthesisGeneral Physics and AstronomyCombustion02 engineering and technology021001 nanoscience & nanotechnology01 natural scienceschemistry.chemical_compoundchemistryvisual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES [Research Subject Categories]Transparent ceramicsCeramicComposite material0210 nano-technologySelf-propagating high-temperature synthesis
researchProduct

Spark Plasma Sintering à partir de poudres mécaniquement activées : compréhension des transitions de phase au cours d'un frittage réactif

2007

International audience; À " basse température " (entre 400 et 600 ◦C), l'oxydation de MoSi2 entraîne sa désintégration en poudre (phénomène de " peste "). De récents travaux ont montré que l'utilisation de MoSi2 dense et nano-organisé permettrait de ralentir ce phénomène de " peste ". Le défi de produire des matériaux denses et nano-organisés peut être relevé par le frittage " flash " réactif sous champ électrique à partir des poudres mécaniquement activées (Mechanically-Activated Spark Plasma Sintering, MASPS). Le contrôle de la composition et de la microstructure du composé intermétallique MoSi2 nécessite de déterminer les paramètres du frittage SPS (température, rampe de montée en tempér…

010302 applied physicsMaterials science0103 physical sciences[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci][ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Physical chemistrySpark plasma sinteringGeneral Materials ScienceNon oxide ceramics02 engineering and technology021001 nanoscience & nanotechnology0210 nano-technology01 natural sciencesMatériaux & Techniques
researchProduct

Comparative Study on Micromechanical Properties of ZnO:Ga and ZnO:In Luminiscent Ceramics

2021

The research has been supported by the Project ERANET RUS_ST#2017-051(Latvia) and #18-52-76002 (Russia). The Institute of Solid State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union’s Horizon 2020 Framework, Program H2020-WIDESPREAD-01-2016-2017-Teaming Phase 2 under grant agreement No. 739508, project CAMART2.

010302 applied physicsMaterials scienceHot pressed ZnO ceramicsnanoindentation010308 nuclear & particles physicsPhysicsQC1-999microstructureGeneral Engineeringfracture modeGeneral Physics and Astronomyhot pressed zno ceramicsNanoindentationMicrostructure01 natural sciencesvisual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]CeramicComposite material
researchProduct

Crystalline phase detection in glass ceramics by EPR spectroscopy

2018

The advances of EPR spectroscopy for the detection of activators as well as determining their local structure in the crystalline phase of glass ceramics is considered. The feasibility of d-element (Mn2+, Cu2+) and f-element (Gd3+, Eu2+) ion probes for the investigation of glass ceramics is discussed. In the case of Mn2+, the information is obtained from the EPR spectrum superhyperfine structure, for Gd3+ and Eu2+ probes – from the EPR spectrum fine structure, whereas for Cu2+ ions the changes in the EPR spectrum shape could be useful. The examples of EPR spectra of the above-mentioned probes in oxyfluoride glass ceramics are illustrated. ----/ / /---- This is the preprint version of the fol…

010302 applied physicsMaterials scienceglass ceramicsPhysics and Astronomy (miscellaneous)Динамика кристаллической решеткиGeneral Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesLocal structureSpectral lineIonlaw.inventionelectron paramagnetic resonancelawparamagnetic ionsPhase (matter)visual_art0103 physical sciencesvisual_art.visual_art_medium:NATURAL SCIENCES:Physics [Research Subject Categories]Physical chemistryCeramic0210 nano-technologyElectron paramagnetic resonanceLow Temperature Physics
researchProduct

The effect of bias field on the dielectric response of Ba0.95Pb0.05TiO3+Со2О3

2021

The nature of the dielectric response in ferroelectric ceramics Ba0.95Pb0.05TiO3+Со2О3 (BPTC) under the influence of a constant bias field EB in the phase transition region is studied. It is found ...

010302 applied physicsPhase transitionMaterials scienceCondensed matter physicsFerroelectric ceramics02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesDielectric responseElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistry0103 physical sciencesBarium titanate0210 nano-technologyConstant (mathematics)Bias fieldFerroelectrics
researchProduct

Relaxation of polarization in (K0.5Na0.5)(Nb0.93Sb0.07)O3 ferroelectric ceramics modified by BaTiO3

2017

ABSTRACTA study of low-frequency relaxation of polarization in conventionally prepared ceramic compounds of (1-x)(K0.5Na0.5)(Nb0.93Sb0.07)O3+xBaTiO3+0.5mol.%MnO2 (x = 0.02, 0.04) examined over a wide temperature range is reported. Anomalous behavior of the temperature dependence of the coercive field Ec(T) is detected in the temperature range of the orthorhombic to tetragonal phase transition. The observed features of polarization are assigned to dynamics of the domain structure at the temperature range of phase coexistence.

010302 applied physicsPhase transitionMaterials scienceCondensed matter physicsFerroelectric ceramics02 engineering and technologyCoercivityAtmospheric temperature range021001 nanoscience & nanotechnologyCondensed Matter PhysicsPolarization (waves)01 natural sciencesElectronic Optical and Magnetic MaterialsTetragonal crystal systemNuclear magnetic resonancevisual_art0103 physical sciencesvisual_art.visual_art_mediumOrthorhombic crystal systemCeramic0210 nano-technologyFerroelectrics
researchProduct

Dielectric properties of potassium–sodium niobate ceramics at low frequencies

2016

ABSTRACTA study of the effects of ageing history on the electrical properties of lead-free ferroelectric ceramics of (K0.5Na0.5)(Nb1−xSbx)O3 + 0.5 mol% MnO2 and (K0.5Na0.5)(Nb1−xTax)O3 + 0.5 mol%MnO2 for x = 0.05 is reported. The samples after storage at a constant temperature have been subject to infra-low-frequency electric field and radiation. Differences of the photoelectric response between the two examined compounds were found and the restoration of polarisation in the aged ceramic materials by cycles of applied field is discussed.

010302 applied physicsPhotocurrentMaterials sciencebusiness.industryFerroelectric ceramicsAnalytical chemistry02 engineering and technologyDielectricPhotoelectric effect021001 nanoscience & nanotechnology01 natural sciencesFerroelectricityOpticsvisual_artElectric field0103 physical sciencesvisual_art.visual_art_mediumGeneral Materials ScienceIrradiationCeramic0210 nano-technologybusinessInstrumentationPhase Transitions
researchProduct

Positron Annihilation Lifetime Spectroscopy Insight on Free Volume Conversion of Nanostructured MgAl2O4 Ceramics

2021

H.K. and A.I.P. are grateful for the support from the COST Action CA17126. H.K. was also supported by the Ministry of Education and Science of Ukraine (project for young researchers No. 0119U100435). In addition, I.K. and H.K. were also supported by the National Research Foundation of Ukraine via project 2020.02/0217, while the research of A.I.P. was funded by the Latvian research council via the Latvian National Research Program under the topic ?High-Energy Physics and Accelerator Technologies?, Agreement No: VPP-IZM-CERN-2020/1-0002. In addition, the research of A.I.P. has been supported by the Latvian-Ukrainian Grant LV-UA/2021/5. The Institute of Solid State Physics, University of Latvi…

010302 applied physicsPositron trappingGeneral Chemical EngineeringFree-volume defectsPositron annihilationpositron annihilationnanoporespositronium decay02 engineering and technologynanostructured ceramicsfree-volume defectsnanostructured ceramics; positron annihilation; positronium decay; positron trapping; free-volume defects; nanopores021001 nanoscience & nanotechnologyPositronium decay7. Clean energy01 natural sciencesNanoporesChemistry0103 physical sciences:NATURAL SCIENCES [Research Subject Categories]positron trappingGeneral Materials Science0210 nano-technologyNanostructured ceramicsQD1-999Nanomaterials
researchProduct

Interaction of Oily Water with Floating Porous Ceramic and Immobilized Microorganisms

2018

Oily water was treated with porous ceramic granules and immobilized microorganisms. Floating granules with bulk density of 0.63-0.66 g cm-3were used. The sorption of motor oil was investigated for dry and wetted granules. Respiration experiments showed that microorganisms immobilized on floating ceramic carrier and treated with oily water were influenced by agitation of liquid. The treatment of oily water with low salinity (1-9 g L-1) showed that oil removal efficiency decreased after increasing water salinity. Likewise, oil removal efficiency decreased from 12 to 9% per gram of ceramic carrier after increasing the spill of oil from 9 to 35 g per square meter. Porous granules with immobiliz…

0106 biological sciencesbusiness.product_categoryMechanical EngineeringMicroorganismSorption010501 environmental sciencesBiodegradation01 natural sciencesPorous ceramicsChemical engineeringMechanics of Materials010608 biotechnologyEnvironmental scienceGeneral Materials SciencebusinessMotor oil0105 earth and related environmental sciencesKey Engineering Materials
researchProduct

Evaluation of Glyphosate Ecotoxicity and Biodegradability in the Municipal Wastewaters

2018

Glyphosate (G) is a broad-spectrum systemic organophosphate herbicide being widely used to control weeds in agricultural fields and urban areas. Its safety for both human health and aquatic biomes is a subject of wide debate. This study was aimed at evaluating the removal efficiency and ecotoxicity of G based herbicide (GBH) Klinik® (Nufarm, Austria) added to the raw municipal wastewater (WW) in a lab-scale model column system. The effect of oxide ceramics as a filtering medium (treatment „B”), as well as activated sludge and nutrients (treatment „C”) was compared with the control columns, which contained only WW (treatment „A”). After 72h treatment of WW spiked with 100 mg/L G, the lowest …

021110 strategic defence & security studiesOxide ceramicsbiologyChemistryMechanical EngineeringDaphnia magna0211 other engineering and technologies02 engineering and technology010501 environmental sciencesBiodegradationbiology.organism_classification01 natural scienceschemistry.chemical_compoundMechanics of MaterialsGlyphosateEnvironmental chemistryGeneral Materials ScienceEcotoxicity0105 earth and related environmental sciencesKey Engineering Materials
researchProduct